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Abstract

A model of visual perception and recognition is described. The model contains: (i) a low-level subsystem which performs both
a fovea-like transformation and detection of primary features (edges), and (ii) a high-level subsystem which includes separated
‘what’ (sensory memory) and ‘where’ (motor memory) structures. Image recognition occurs during the execution of a ‘behavioral
recognition program’ formed during the primary viewing of the image. The recognition program contains both programmed
attention window movements (stored in the motor memory) and predicted image fragments (stored in the sensory memory) for
each consecutive fixation. The model shows the ability to recognize complex images (e.g. faces) invariantly with respect to shift,
rotation and scale. © 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. Beha6ioral paradigm

It is known that the density of photoreceptors in the
retina is greatest in the central area (fovea) and de-
creases to the retinal periphery whereas the size of
neuronal receptive fields in the retinal output and in the
cortical map of the retina increases to the periphery
[1–4]. As a result, the resolution of the image represen-
tation in the visual cortex is highest for the part of the
image projected onto the fovea and decreases rapidly
with distance from the fovea center. During visual
perception and recognition, human eyes move and suc-
cessively fixate at the most informative parts of the
image which therefore are processed with the highest
resolution. At the same time, the mechanism of visual
attention uses information extracted from the retinal
periphery for selection of the next eye position and
control of eye movement. Thus, the eyes actively per-
form problem-oriented selection and processing of in-

formation from the visible world under the control of
visual attention [5–13]. Consequently, visual perception
and recognition may be considered as behavioral pro-
cesses and probably cannot be completely understood
in the limited context of neural computations without
taking into account the behavioral and cognitive
aspects.

From the behavioral point of view, an internal repre-
sentation (model) of new circumstances is formed in the
brain during conscious observation and active examina-
tion. The active examination is aimed toward the find-
ing and memorizing of functional relationships between
the applied actions and the resulting changes in sensory
information. An external object becomes ‘known’ and
may be recognized when the system is able to subcon-
sciously manipulate the object and predict the object’s
reactions to the applied actions. According to this
paradigm, the internal object representation contains
chains of alternating traces in ‘motor’ and ‘sensory’
memories. Each of these chains reflects an alternating
sequence of elementary motor actions and sensory (pro-
prioceptive and external) signals which are expected to
arrive in response to each action. The brain uses these
chains as ‘behavioral programs’ in subconscious ‘behav-
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ioral recognition’ when the object is (or is assumed)
known. This ‘behavioral recognition’ has two basic
stages: conscious selection of the appropriate behav-
ioral program and the subconscious execution of the
program. Matching the expected (predicted) sensory
signals with the actual sensory signals, arriving after
each motor action, is the essential procedure in the
program execution.

The above behavioral paradigm was formulated and
developed in the context of visual perception and
recognition in a series of significant works [9,13–15].
Using Yarbus’ approach [13], Noton and Stark [9]
compared the individual scanpaths of human eye
movements in two phases: during memorizing and
subsequent recognition of the same image. They found
these scanpaths to be topologically similar and sug-
gested that each object is memorized and stored in
memory as an alternating sequence of object features
and eye movements required to reach the next feature.
The results of Noton and Stark [9] and Didday and
Arbib [14] prompted the consideration of eye move-
ment scanpaths as behavioral programs for recogni-
tion. The process of recognition was supposed to
consist of an alternating sequence of eye movements
(recalled from the motor memory and directed by at-
tention) and verifications of the expected image frag-
ments (recalled from the sensory memory).

Ungerleider and Mishkin [16], Mishkin et al. [17],
Van Essen [4], and Kosslyn et al. [15] presented neuro-
anatomical and psychological data complementary to
the above behavioral concept. It was found that the
higher levels of the visual system contain two major
pathways for visual processing called ‘where’ and
‘what’ pathways. The ‘where’ pathway leads dorsally
to the parietal cortex and is involved in processing and
representing spatial information (spatial locations and
relationships). The ‘what’ pathway leads ventrally to
the inferior temporal cortex and deals with processing
and representing object features [4,15,17,16]. The be-
havioral concept joined with this neuro-anatomical
theory provides: (i) the explicit functional coupling
between the low-level vision (foveal structure of the
retino-cortical projection, orientation selectivity in the
visual cortex, etc.) and the high-level brain structures
involved in visual perception and recognition; (ii) the
clear functional role of visual attention in the coupling
between the low- and high-levels of the visual system.

The behavioral concept of visual perception and
recognition has been widely accepted in the field of
robot vision ([5,18–23], and others). Rimey and
Brown [23] presented a detailed analysis of the behav-
ioral concept and developed a model of selective atten-
tion based on this concept (the Augmented Hidden
Markov Model). The present model was developed at

approximately the same time (in 1990–1991), when all
authors worked together in A.B. Kogan Research In-
stitute for Neurocybernetics at Rostov State Univer-
sity.

1.2. Image features, in6ariant representation and frames
of reference

The question of what features are detected from 2D
retinal images at the preattentive stage to represent the
shape of 3D objects is still open. Beginning with the
classic work of Hubel and Wiesel [24,25], neurophysio-
logical studies have demonstrated that neurons in the
primary visual cortex can detect elementary image fea-
tures such as local orientations of line segments or
edges. Therefore, most early theories based on neuro-
physiological data assumed that the visual system de-
tects relatively simple features at the preattentive stage
and uses some attention mechanisms of a serial type
to bind the simple features into more complex shape
features [7,8,12]. Alternatively, recent psychological
studies have shown that early visual processes are
much more sophisticated than previously assumed.
Certain relations among features are detected preatten-
tively including some 2D feature combinations reflect-
ing elements of 3D shapes [26,27]. These data support
the idea that at the end of the preattentive stage the
retinal image is represented by the primary features in
some mutual spatial relations or spatial compositions
(patterns). The spatial patterns of edges may represent
2D projections of elementary 3D shapes (e.g. vertices)
and more complex combinations of 3D angles. The
detection of spatial patterns of edges at the preatten-
tive stage may contribute to 3D scene perception in
addition to other mechanisms (stereopsis and binocu-
lar depth perception; color and texture analysis; analy-
sis of occlusions during head or body movements,
etc.).

One key issue of visual recognition is the mecha-
nism used for invariant image representation. Marr
[28], Palmer [29], Hinton and Lang [30] and others
assumed that the visual system uses an object-based
frame of reference attached to the center of the object.
However, the object-based reference paradigm has sev-
eral significant disadvantages. First, this paradigm pre-
sumes that the object is isolated and does not have a
complex background. Second, if a part of an object is
missing or occluded, or an additional part is present,
the center of the object may shift, making it difficult
to recognize the object. As a result, previous models
of recognition using the object-based frame of refer-
ence demonstrated invariant recognition of only simple
objects (letters, binary objects without background,
etc.) to which such a frame of reference is easily at-
tached (for example, see Refs. [31–34]).
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Fig. 1. Schematic of the model.

In our model, a set (spatial composition or pattern) of
edges is extracted from the retinal image at each fixation.
Image representation at the fixation point is based on the
assumption that the features (edges) extracted from the
retinal periphery have two distinct functions. One func-
tion of the peripheral edges is to provide potential
targets for the next gaze fixation (which was used in most
active vision models, for example, see Ref. [5]). The other
function of these edges, unique to the present model, is
to provide a context (‘context features’) for the ‘basic’
feature (edge) in the center of the fovea.

The relative orientations of context edges and their
relative angular locations with respect to the basic edge
are invariant to rotation and size, and may be used as
second-order invariant features of the image at the
current point of fixation. Thus, instead of the object-
based frame of reference, we use a feature-based frame
of reference attached to the basic edge at the fixation
point. Since both the retinal images at the fixation points
and the sequential shifts of the fixation point are repre-
sented in this invariant form, the entire image is invari-
antly represented. Moreover, the feature-based frame of
reference coupled with the multiplicity of fixation points
along the scanpath allows image recognition from a part
of the image (from a fraction of the scanpath belonging
to this part) when the image is partly perturbed or the
object of recognition in the image is occluded. Thus, the
stability of recognition increases with the number of
fixations.

2. Model

2.1. General description of the model

A functional diagram of the model is shown in Fig.
1. The attention window1 (AW) performs a primary
transformation of the image into a ‘retinal image’ at the
fixation point. The primary transformation provides a
decrease in resolution of the retinal image from the
center to the periphery of the AW, that simulates the
decrease in resolution from the fovea to the retinal
periphery in the cortical map of the retina. The retinal
image in the AW is used as an input to the module for
primary feature detection which performs a function
similar to the primary visual cortex. This module con-
tains a set of neurons with orientationally selective
receptive fields (ORF) tuned to different orientations of
the local edge. Neurons with the ORF, centered at the
same point but with different orientation tuning, inter-
act competitively due to strong reciprocal inhibitory
interconnections. The orientation tuning of the ‘win-

1 The present model focuses on the attention mechanisms associ-
ated with eye movements and foveation. Covert attention, which is
not associated with eye movements and the structure of the retina,
has not been in the scope of our consideration although a number of
ideas and algorithms used may relate to covert attention as well. The
term ‘attention window’ used in our model directly relates to the part
of the image projected onto the retina and differs from the same term
used in publications on covert attention.
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ning neuron’ encodes the edge orientation at this point.
The module for primary feature detection extracts a set
of edges (one ‘basic’ edge in the AW center and several
‘context’ edges) which characterizes the retinal image at
given point of fixation.

The modules described above form a low-level sub-
system of the model. The next module performs an
intermediate-level processing and completes the preat-
tentive stage in the model. It transforms the set of
primary features into invariant second-order features
using a coordinate system (frame of reference) attached
to the basic edge in the center of the AW and oriented
along the brightness gradient of the basic edge. The
relative orientations and relative angular locations of
the context edges with respect to the basic edge are
considered as invariant second-order features.

The performance of the high-level subsystem and the
entire model may be considered in three different
modes: memorizing, search, and recognition.

In the memorizing mode, the image is processed at
sequentially selected fixation points. At each fixation
point, the set of edges is extracted from the AW,
transformed into the invariant second-order features
and stored in the sensory memory (‘what’ structure).
The next position of the AW (next fixation point) is
selected from the set of context points and is also
represented with respect to the coordinate system at-
tached to the basic edge. A special module shifts the
AW to a new fixation point via the AW controller
playing the role of the oculomotor system. Each rela-
tive shift of the AW (‘eye movement’) is stored in the
motor memory (‘where’-structure). As a result of the
memorizing mode, the whole sequence of retinal images
is stored in the ‘what’ structure (sensory memory), and
the sequence of AW movements is stored in the ‘where’
structure (motor memory). These two types of elemen-
tary ‘memory traces’ alternate in a chain which is
considered as a ‘behavioral recognition program’ for
the memorized image.

In the search mode, the image is scanned by the AW
under the control of a search algorithm. At each fixa-
tion, the current retinal image from the AW is com-
pared to all retinal images of all objects stored in the
sensory memory. The scanning of the image continues
until an input retinal image similar to one of the stored
retinal images is found at some fixation point. When
such a retinal image is found, a hypothesis about the
image is formed, and the model turns to the recognition
mode.

In the recognition mode, the behavioral program is
executed by way of consecutive shifts of the AW (per-
formed by the AW controller receiving information
from the motor memory) and consecutive verification
of the expected retinal images recalled from the sensory
memory. The scanpath of viewing in the recognition
mode reproduces sequentially the scanpath of viewing

in the memorizing mode. If a series of successful
matches occurs, the object is recognized, otherwise the
model returns to the search mode.

2.2. Primary transformation: formation of the retinal
image within the AW

The retinal image results from the initial image I=
{xij} by way of a special transformation used to obtain
a decrease in resolution from the AW center to its
periphery. To represent a part D of the image ((i, j )�D)
at resolution level l(l�{1, 2, 3, 4, 5}) we used the
recursive computation of the Gaussian-like convolution
[5] at each point of D :

xij
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%
p=2

p= −2

%
q=2

q= −2

gpq ·xi−p, j−q
(1)

%
p=2

p= −2

%
q=2

q= −2

gpq ·xi−p · 2l−1, j−q · 2l−1
(l−1)

(1)
�

where the coefficients of convolution belong to the
following matrix [5]:

[gpq ]=Ã
Ã

Ã

Æ

È

1
4
6
4
1

4
16
24
16
4

6
24
36
24
6

4
16
24
16
4

1
4
6
4
1

Ã
Ã

Ã

Ç

É

·
1

256

(p and q= −2, −1, 0, 1, 2). (2)

In the model, the primary image transformation
maps the initial image I={xij} into the retinal image
IR(n)={xij

R(n)} at each nth fixation point. The position
of the fixation point (io(n), jo(n)) and the resolution
level lo(n) in the vicinity of that point are considered to
be parameters of the retinal image. The central point
(io(n), jo(n)) is surrounded by three concentric circles
whose radii are functions of lo(n):

R0(lo)=1.5 ·2lo,

R1(lo)=1.5 ·2lo+1,

R2(lo)=1.5 ·2lo+2. (3)

The retinal image at the nth fixation point IR(n)=
{xij

R(n)} is formed from I={xij} as follows:

xij
R(n)=Í

Á

Ä

xij
lo(n), if rij(n)5R0(lo)

xij
lo(n)+1, if R0(lo)Brij(n)5R1(lo)

xij
lo(n)+2, if R1(lo)Brij(n)5R2(lo)

(4)
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where

rij(n)=
(i− io(n))2+ ( j− jo(n))2. (5)

Thus, the initial image is represented in the AW: with
the highest resolution l= lo(n) within the central circle
(‘fovea’), with lower resolution l= lo(n)+1 within the
first ring surrounding the central circle, and with the
lowest resolution l= lo(n)+2 within the second ring.

The areas of different resolution are shown in Fig. 2,
where the central circle -‘fovea’ and the first ring are
separated by different shading patterns. Fig. 3(b) shows
an example of the retinal image at one point of fixation.

2.3. Detecting primary features

The module for primary feature detection performs a
function similar to the function of the primary visual
cortex containing orientationally selective neurons. Ac-
cording to the Hubel and Wiesel theory, neurons tuned
to the same orientation are packed into orientation
columns which, in turn, comprise the retinotopically
organized processing module of the visual cortex-hyper-
column [24,25]. Therefore, visual cortex neurons detect
the orientation of edges at each point of the retinal
image. In our model, edges are detected by a network
of orientationally selective neurons and are considered
to be the primary features of the image. Each edge is

detected with resolution dependent on the position of
the edge in the retinal image.

The orientationally selective receptive field (ORF) of
the neuron with coordinates (i, j ) tuned to the orienta-
tion a (a=0, 1, 2, …, 15) is formally described in our
model using the algorithm by Grossberg, Mingolla and
Todorovic [35]. The discrete angle step of 22.5° is
considered as a unit in all angle measurements. The
ORF is described as a difference between two Gaussian
convolutions with spatially shifted centers. The input
signal to the neuron tuned to the orientation a is:

Yija=%
pq

xpq
R · (Gpqija

+ −Gpqija
− ), (6)

where

Gpgija
+ =exp(−g2 · ((p− i−ma)2+ (q− j−na)2));

Gpgija
− =exp(−g2 · ((p− i+ma)2+ (q− j+na)2)). (7)

In Eq. (7), g is a reciprocal variance. The parameters
ma and na depend on the ORF orientation a :

ma=d(l) · cos(2 ·p ·a/16);

na=d(l) · sin(2 ·p ·a/16), (8)

where d(l) defines the distance between the center of
each Gaussian and the center of the ORF and depends
on the resolution level l in a given area of the retinal
image:

d(l)=max{2l−2, 1}. (9)

Sixteen neurons, whose ORF have the same location
but different orientations, interact competitively due to
strong reciprocal inhibitory connections:

t ·
d
dt

Vija= −Vija+Yija−b · %
15

k=0
k"a

Zijk−T ;

Zija= f(Vija); a=0, 1, 2,..., 15, (10)

where Vija and Zija are the membrane potential and
output of the neuron (i, j ) with the ORF tuned to the
orientation a, respectively; b is a coefficient characteriz-
ing the reciprocal inhibition (b\1); T is the neuron
threshold; t is the time constant; f(V)=V if V]0,
otherwise f(V)=0.

The possible steady state solutions of system (10) are:
(i) all Z( ija=0 (if all YijaBT) or (ii) only one Z( ija=
Yija−T\0 at a=8* for which Yija is maximal (Z( ija=
0, if a"8*). In the first case, there are no edges at the
point (i, j ); in the second case, there is an edge with the
orientation 8* at this point.

At each nth fixation (AW position) oriented edges
are detected: at the fixation point (io(n), jo(n)) (the
‘basic edge’ in the center of the AW) and at 48 ‘context’

Fig. 2. Schematic of the attention window (AW). The areas of
different resolution (central circle -‘fovea’ and first ring) are separated
by shadings. The context points are located at the intersections of
sixteen radiating lines and three concentric circles, each in a different
resolution area. X0Y is the absolute coordinate system. The relative
coordinate system X1OY1 (‘feature-based frame of reference’) is
attached to the basic edge at the center of the AW. The absolute
parameters of one context edge, 8c and cc, and its relative parame-
ters, 8 and c, are shown.



I.A. Rybak et al. / Vision Research 38 (1998) 2387–24002392

Fig. 3. Processing of the image. (a) The initial image. (b) Image transformation within the AW (the retinal image) in one fixation point. (c) The
basic and context edges detected from the retinal image. (d) The shift to the next fixation point (shown by the black arrow). (e) The scanpath of
image viewing on the background of the initial image. (f) The same scanpath on the background of the sequence of retinal images along the
scanpath.

points which are located at the intersections of sixteen
radiating lines (with the angle step of 22.5°) and three
concentric circles, each in a different resolution area
(see Fig. 2). The radii of these circles (R00, R01 and R02)
exponentially increase:

R00(lo)=2lo;

R01(lo)=2lo+1;

R02(lo)=2lo+2. (11)

Context edges located in the smallest circle are de-
tected with the same resolution as the basic edge; the
resolution with which the other edges are detected is
determined by their positions in the retinal image. The
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Fig. 4. Invariant representation of a set of edges on the rectangular maps of surfaces of three tori. Relative orientation 8 and relative angular
location c change in horizontal and vertical directions, respectively. The points on each map correspond to the edges extracted from one area of
resolution (one circle in Fig. 2). The arrow of points on the maps correspond to the set of edges in Fig. 3(b). The next fixation point (the same
as in Fig. 3(d)) is indicated by circle. The parameters of the AW shift to the next fixation point are shown at the bottom.

basic and context edges in one fixation point (the same
as in Fig. 3(b)) are shown in Fig. 3(c) by doubled white
and black segments whose lengths increase to the AW
periphery with the decrease of resolution.

2.4. In6ariant representation and comparison of the
retinal images: a feature-based frame of reference

Let us attach the absolute coordinate system X0Y to
the AW center (Fig. 2). The basic edge in the AW
center may be represented by the pair of parameters
(8o, lo), where: 8o (8o�{0, 1,…,15}) is the orientation
of the basic edge (represented by the angle between the
axis OX

�
and the vector of brightness gradient of the

basic edge, see Fig. 2) and lo (lo�{1, 2, 3}) is the level
of resolution in the central area of the AW. Each
context edge can be represented in the absolute coordi-
nate system by the three parameters: (8c, cc, l) where:
8c is the orientation of the context edge; cc character-
izes the angular location of the edge in XOY (see Fig.
2); l is the level of resolution in the area of the edge; 8c

and cc�{0, 1, …, 15}.
Let us now attach the ‘relative’ coordinate system

X1OY1 so that the axis OY
� 1 is directed along the vector

of brightness gradient of the basic edge (‘feature-based
frame of reference’; see Fig. 2). The context edge
(8c, cc, l) may be represented with respect to the rela-
tive coordinate system by the parameters (8, c, l) (see
Fig. 2), where: 8 is the relative orientation of the
context edge; c is its relative angular location; l char-
acterizes the relative distance from the AW center.
These parameters are calculated as follows:

8=mod16(8c−8o+16);

c=mod16(cc−8o+20);

l= l− lo;

8, c�{0, 1, …, 15};

l�{0, 1, 2}. (12)

Thus, the retinal image within the AW at nth fixation
point can be invariantly represented by three arrays of
pairs of numbers {8k(n), ck(n)}l ; k=0, 1,…, 15; l=0,
1, 2.

Since both 8k(n) and ck(n) change periodically, each
nth retinal image may be invariantly represented by a
set of points on the surfaces of three tori (each torus for
one magnitude of l). An example of such a representa-
tion for the set of edges in Fig. 3(c) is shown in Fig. 4
by the arrays of points on the rectangular maps of three
toroidal surfaces. The ‘toroidal’ method was used in a
complex version of the model for invariant representa-
tion of retinal images in the high-level subsystem (sen-
sory memory). The patterns of points on the toroidal
surfaces represent retinal images in an invariant form.
Most classical neural network classifiers (NNC) may be
taught to recognize such patterns, and be used in the
high-level subsystem of the model for comparison of
the arriving retinal images with those stored in the
sensory memory. The chosen NNC should be able to
recognize/compare patterns with disturbances and noise
(that most classical NNC types can do well; see Ref.
[36]). However, in this case there is no necessity in
pattern recognition invariant to shift, rotation and scale
(that still is an unresolved problem in the classical
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NNC). In a more complex version of our model, the
classical Hopfield neural network [37] was incorporated
into the high-level subsystem of the model and success-
fully performed recognition (comparison) of sequen-
tially arriving retinal images during both modes: search
and recognition.

In a simplified version of the model, each nth retinal
image is invariantly represented by three 16 component
vectors 8� c(n) whose components 8k(n) are arranged
with the increase of ck(n):

8� cl(n)={80(n); 81(n); …; 816(n)}l ; l=1, 2, 3.
(13)

These vectors are stored in the ‘what’ structure (sen-
sory memory). The following function has been used to
evaluate a difference between the stored retinal image
represented in the sensory memory by the vectors,
8� cl={80; 81; …; 816}l, and the arriving retinal images
represented by the vectors 8� *

cl
={8*0 ; 8*1 ; …; 8*16}l :

F
�

8� fl, 8� *
cl

�
=

1
N

· %
l

%
c

1

1+8 · sin2� p

16
�

8� fl−8� *
cl

��.

(14)

Only edges (vector components) present in the stored
retinal image are taken into account in Eq. (14); N is
the number of these edges. The compared retinal im-
ages are considered similar if the value of F exceeds a
threshold of recognition Thr found experimentally.

2.5. Shifting the AW: selection and representation of
the next fixation point

In the memorizing mode, the model selects each next
fixation point from the set of context points in the
current retinal image (Fig. 2). Thus, the current context
points are considered to be potential targets for the
next shift of the AW.

It is necessary to note that the selection of the next
fixation point from potential targets in the memorizing
mode (when the system ‘sees’ an image for the first
time) relates to very complicated, fundamental prob-
lems of visual search. Wolfe and Cave [38–40] argued
that the attention mechanism for this selection uses
both bottom-up information from the image and top-
down information from the high-level visual structures.
In Guided Search [38], they also made an attempt to
formalize a top-down selection mechanism under condi-
tions when the target features of the object have been
specified. However, in general the top-down control of
attention relates to the high-level cognitive processes
which are poorly understood and weakly formalized.
At the same time, it is clear that the selection of fixation
points in memorizing mode should be partly pre-
defined by the abstract knowledge of objects and the
task at hand (problem-oriented selection). The present

model has been directed toward modeling of the behav-
ioral, structural and functional aspects of visual recog-
nition with a special focus on possible mechanisms for
invariant recognition. While developing the model, we
did not intend to implicitly concern the complex seman-
tic problems of visual search. But, because of the deep
relationships between visual search and recognition, we
would not be able to build a working model without
incorporating a simplified visual search mechanism.
However, the key problems of visual search were be-
yond the scope of the present model.

The present model does not have the top-down con-
trol of attention. At each fixation during memorizing
mode, all context points attract the AW, each to its
own position. The attractive effects of context points on
the AW reciprocally inhibit each other, and the context
point with the strongest ‘attracting force’ wins ‘the
competition for the AW’ and attracts it to its position.
Attracting force of the kth context point, Ak, is defined
as follows:

Ak=a1 ·
Zk

Zmax

+a2 ·
lk

2
+a3 ·hij(n)+a4 ·xij. (15)

The first two terms in Eq. (15) provide the depen-
dence of the attracting force on the content of the
image (bottom-up control of attention): the first term
determines the normalized value of brightness gradient
in the context point, which, in turn, is defined by the
output of the corresponding neuron-winner in the mod-
ule for primary feature detection; the second term
determines the relative distance of the context edge
from the center of the retinal image.

The third term was incorporated in Eq. (15) to
prevent ‘cycling’. The function hij(n) determines a ‘nov-
elty’ of the vicinity of the context point. After shifting
the AW to the next fixation point, the function hij(n)
for all points within a vicinity of the previous fixation
point falls to zero and then slowly recovers with time to
the value of one. This function provides the ‘inhibition
of return’ effect which has been demonstrated in a
number of experiments starting from Posner and Cohen
[41].

The function xij in the fourth term (xij� [0, 1]) pre-
defines a ‘semantic significance’ of the area which in-
cludes the context point. This function is defined in
advance for each image if a4"0 and compensates for
the lack of top-down control of attention from the
high-level visual structures in the memorizing mode.

The coefficients a1, a2, a3 and a4 determine weights of
the above items. They have been tuned experimentally
using the following criteria: (i) the resulting scanpaths
should cover the memorized images without cycling and
(ii) the scanpaths should go through the semantically
important image partitions if a4"0.

Each shift of the AW (‘eye movement’) from nth
fixation point is invariantly represented in the ‘where’
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structure (motor memory) by the parameters of the mth
context point which is selected to be the next (n+1)th
fixation point. These parameters are defined with re-
spect to the relative coordinate system X1OY1 in the
current nth retinal image. The parameters of the shift
are:

cshift(n, n+1)=cm(n);

lshift(n, n+1)=lm(n);

ushift(n, n+1)= lo(n+1)− lo(n), (16)

where cshiftand lshift define the relative direction and
relative distance of the shift, respectively; ushift defines
the change of resolution in the central area of the AW
when the latter moves from the nth to (n+1)th point
of fixation.

Fig. 3(d) shows an example of shifting the AW to the
next fixation point (the shift is shown by the arrow).
The next fixation point is indicated in Fig. 4 by the
cycle. The parameters of the shift are presented at the
bottom of Fig. 4. During the memorizing mode, the
model sequentially selects points of fixation and pro-
cesses the image by shifting the AW along a scanpath
of viewing (see Fig. 3(e) and (f)). During this process,
the retinal images and AW shifts, related to the same
image, are memorized in the sensory and motor memo-
ries, respectively and are alternatively connected form-
ing the behavioral recognition program for this image.

In the recognition mode, the model checks the hy-
pothesis about the object generated at the end of the
search mode. In contrast to the memorizing mode,
shifting the AW in the recognition mode is performed
under the control of both top-down and bottom-up
information. The bottom-up information depends on
image content and contains the absolute parameters of
the basic edge at the current nth point of fixation:
orientation, 8o(n), and resolution, lo(n). The top-down
information is recalled from the motor memory accord-
ing to the executed behavioral program and the current
AW position on the scanpath. This information con-
tains the invariant (relative) parameters of the AW shift
(‘eye movement’): relative direction, cshift(n, n+ 1); rel-
ative distance, lshift(n, n+ 1), and relative resolution in
the center of the AW, ushift(n, n+ 1). The AW con-
troller uses both the above types of information for
shifting the AW to the next location (fixation point).

3. Results

Gray-level images of scene objects and faces with the
size 128×128 pixels and 256 gray levels were used in
our test experiments. Examples of these images are
shown in Fig. 5(a) and 6(a). In the memorizing mode,
all tested images were sequentially presented to the
model for memorizing. For ‘semantically simple’ im-

ages (scene objects, e.g. in Fig. 5(a)) the coefficient a4 in
Eq. (15) was set to zero, and the images were memo-
rized without the ‘semantic pre-tuning’. For the face
images (e.g. in Fig. 6(a)), this coefficient was set to one.
The value of the function of ‘semantic significance’ xij

was set to one for the image regions containing such
semantically important image elements as ‘eyes’,

Fig. 5. Examples of recognition of test images invariantly with respect
to shift, rotation and scale (‘semantically simple’ images). (a) The test
images with the scanpaths in the memorizing mode. (b) The images
presented for recognition (with the scanpaths during the recognition
mode). These images were obtained from the test images by shifting,
rotation and scaling. The results of recognition are shown by arrays.
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Fig. 6. Examples of recognition of test images (faces) invariantly with respect to shift, rotation and scale. For explanations see the legend to Fig.
5.

‘mouth’ and ‘nose’ and set to zero for the rest of the
image.

In the memorizing mode, the model successively
‘viewed’ the images by way of sequential selection of
fixation points and processing of the parts of the image
within the AW centered at these points. The size of the
AW varied depending on the selected resolution in the
center of the AW. The representation of one ‘retinal
image’ within the AW in the form of a set of the basic
and context edges required 50 bytes of memory. The
number of fixations per memorized image was 15–20

depending on the image complexity. Therefore, the
complete representation of one image required about 1
K memory, which was 16 times less than the initial
image representation. Thus, the model could memorize
and store in memory a reasonably large number of
images. We used an image database containing 20
images of simple scene objects and faces.

To test the model, we randomly selected one of the
memorized images and used a special program which
allowed us to shift the image within the raster of
128×128 pixels, resize it by 50–200%, and rotate it
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through any angle. A shifted, resized and rotated image
was then presented to the model for recognition (see
examples in Fig. 5(b) and 6(b)). Under these ideal
conditions (i.e. without significant perturbations or big
occlusions) the model usually demonstrated a 100%
recognition. Occlusions or perturbations applied to a
part of the image could break the recognition process at
the scanpath points belonging to that part. However,
the model was able to recognize an occluded/perturbed
image by using the rest of the images if the latter
contained a sufficient number of the scanpath points.
Only significant occlusions or perturbations which
broke the scanpath into short partitions (not allowing
the required number of sequential successful matches)
could cause an error when the model did not recognize
the previously memorized image.

Thus, our test experiments showed that the model is
able to recognize complex gray-level images invariantly
with respect to shift, 2D rotation, and scale. The exam-
ples of invariant recognition of scene objects and faces
are shown in Figs. 5 and 6, respectively. The scanpaths
of image viewing in the memorizing mode are shown in
Fig. 5(a) and 6(a). In the recognition mode, the model
executes the corresponding behavioral program associ-
ated with the accepted hypothesis about the object. The
scanpaths of viewing during the recognition mode are
topologically similar to the scanpaths of viewing during
the memorization of the same images (Fig. 5(b) and
6(b)).

4. Discussion

4.1. Model architecture: comparison with other models

The general architecture of our model is not new. A
number of previous computational models of vision
proposed a system architecture consisting of low- and
high-level subsystems, with various top-down and bot-
tom-up attention mechanisms controlling image memo-
rizing and recognition [5,14,20–22,31–34,42,43]. These
models underlined the importance of parallel-sequential
(vs pure parallel) mechanisms for image processing,
perception and recognition. They also indicated the
significance of motor components in image representa-
tion, including explicit representation or emergent for-
mation of scanpaths during image perception
[5,14,20,22,42,43]. Some models utilized separated
‘what’ and ‘where’ high-level subsystems and consid-
ered this separation to be a fundamental property of
the visual system [21,22,31–34,42]. These models fo-
cused on the deep analysis of different fundamental
structural and functional aspects of visual recognition.
However, in most cases the authors of these models did
not present complete models which would be possible
to test with respect to their ability to perform invariant

recognition of real gray-level images. Some of these
models were not tested in this context at all [14,42].
Other models dealt with relatively simple 2D images
such as letters or binary objects without background
[31–34,43]. It is not clear, whether these models are
able to recognize objects in real gray-level images. Some
robot and computer vision models were designed for
the processing and recognition of objects in real scenes,
but did not demonstrate an obvious ability to perform
invariant recognition with respect to size and rotation
[5,20–22]. Alternatively, the ultimate goal of our mod-
eling efforts was to develop a biologically plausible
model of the visual system capable of invariant recogni-
tion of real gray-level images.

4.2. In6ariant image representation and recognition

The exciting ability of natural visual systems to per-
form invariant recognition has attracted the attention
of scientists for more than a 100 years. For several
decades, the property of invariant recognition has been
one of the major objectives and test criteria in different
scientific areas from artificial neural networks to com-
puter and robot vision. However, from a behavioral
point of view, invariant recognition is not an ultimate
goal but rather a tool which helps the system to plan
and execute actions adequate to the environment and
consistent with the task at hand. This ‘problem-ori-
ented’ (task-driven) behavior requires a ‘problem-ori-
ented’ perception and recognition. According to
Didday and Arbib [14], the goal is ‘not to build a little
internal copy of the visual scene, but rather to assist in
making the decision of what action (if any) the organ-
ism should next initiate’. From this point of view, the
‘absolute invariant recognition’, when the visual system
uses some special invariant transformation of the entire
object’s image and provides the same internal object
representation (and hence the same output) at any
object’s location, size and orientation, is practically
useless. In that case, the organism would ‘learn’ that
the object is present in the scene, but would not ‘know’
how to manipulate it. For example, the system would
know that a cup is present, but would not know how to
take it (where the handle is) and whether it is possible
to pour some tea into it (how the cup is oriented in
space). Thus, recognition should be considered as a
process (behavior) during which the system either ac-
tively manipulates a non-invariant object representation
in memory (by transforming it to match the external
image view) or manipulate the external image using
active eye and head movements. The resultant manipu-
lations, used to fit the model to the object, give the
system additional information about object location,
orientation, size, etc.

On the other hand, the complete lack of invariant
representations makes the task of recognition practi-
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cally unresolved. How would the system know which
one of the majority of non-invariant models stored in
memory to take for manipulations in order to match
the object, and how long to manipulate the selected
model before making the decision to take another
model? The natural visual system evidently solves this
dilemma by way of some ‘smart’ combination of the
two above opposite approaches.

A possible (and hopefully plausible) way for such
combination may be based on invariant representation
of an object’s elements in the vicinity of fixation points
(within the AW) and on the use of object manipulations
(eye movements, shifts of the AW) in order to represent
spatial relationships. We have tried to use this idea in
the present model. The model holds invariantly repre-
sented image fragments in the sensory memory. Each
fragment is associated with a certain object and with a
certain action which the system should execute accord-
ing to the behavioral recognition program correspond-
ing to the object. In our model, the identification of a
‘known’ fragment (invariantly represented in memory)
provides only a start to the recognition process which is
executed under top-down control from the high-level
modules. The recognition process, in turn, provides
information about object location and orientation in
space. The system architecture used in the model cou-
pled with the behavioral algorithms of image memoriz-
ing and recognition and with the ‘feature-based
reference frame’ algorithm allows the system both to
recognize objects invariantly with respect to their posi-
tion and orientation in space and to manipulate objects
in space using absolute parameters of the basic feature
at the fixation point and relative spatial relationships
recalled from the motor memory.

The algorithm used in our model for invariant repre-
sentation of the retinal image within the AW is based
on the encoding of relative (with respect to the basic
edge at the fixation point) orientations and angular
positions of the detected edges. The idea of this al-
gorithm is very simple and natural. In other words,
each basic edge at the fixation point is considered in the
context of a set of other edges in the retinal image.
With the decrease in resolution toward the retinal pe-
riphery, a more detailed and precise representation of
image partition in the vicinity of the fixation point is
considered in the context of a more coarse, generalized
representation of a lager part of the image (or the entire
image).

The algorithm used for invariant representation has
no close analogues in previous computational models of
vision. An alternative, biologically plausible algorithm,
first described by Schwartz [43,44], was based on the
logarithmic polar transformation. That algorithm also
represents the image in a form invariant to size and
rotation but has difficulties with the precise location of
the fixation point. We have not found any experimental

data that implicitly support or contradict our al-
gorithm. Special psychophysical studies are needed to
find out whether the visual system can use relative
orientations and/or relative angular locations of edges
for the invariant image representation and recognition.

The question of whether or not the natural visual
system uses invariant image transformations is not
completely understood. For example, it was shown that
the recognition time in humans increased with the angle
of rotation [45] and size scaling [46] of the recognized
images. These data support the idea that the visual
system does not use invariant transformations and rep-
resentations, but recognizes rotated and resized images
using mental rotation and scaling operations. On the
other hand, a dichotomy between object recognition
and mental imagery and the ability of human subjects
to perform a fast rotation-invariant recognition have
been also demonstrated [47,48]. Thus, the question of
whether or not the mental rotation and scaling opera-
tions are essential for invariant recognition (whether
they provide key or additional mechanisms) is still
open. It is also important to note that the time of
recognition in psychophysical experiments is usually
measured from the moment of image presentation to
the moment of making a decision about the object
[45,46]. This overall recognition time actually depends
on many factors (type and complexity of the image,
existence of context used as references, pretuning of
human subjects, etc.) and is a complex composition of
the durations of a number of functionally different
subprocesses (search/viewing, focusing/foveation, gen-
erating a right/wrong hypotheses about the object, test-
ing the hypotheses, etc.). Thus, a further careful
consideration of all relevant factors and evaluation of
the durations of different subprocesses are probably
required in order to use temporal characteristics for a
principal validation of mechanisms for invariant
recognition.

Our model is based on the idea that image fragments
are represented in memory in an invariant form and the
time of their recognition therefore does not depend on
their orientations. The overall object recognition time
in our model contains two phases: the phase of search
which ends with generating a hypothesis about the
object, and the phase of actual recognition when the
system examines the hypothesis using top-down driven
shifts of attention.

The duration of the search phase depends on the
scanning algorithm used, location and size of the im-
age, the number of memorized images, and the number
of fixations used in the memorizing mode (the more
fixations, the faster search). We expect, that the dura-
tion of the search phase should be significantly reduced
by the problem-oriented, top-down mechanisms which
were not considered in the current model.
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The duration of the recognition phase (recognition
mode) in our model depends neither on the object
location, size and orientation nor on the number of
memorized images. It is defined by the number of
sequential successful matches which is considered to be
enough for making a decision on recognition. This
number is limited by the overall number of fixations
used during memorization of the image. We set this
number in advance (dependent or independent on over-
all numbers of used fixations), usually about six to
seven. In fact, this number defined a ‘psychological
self-confidence’ of the system. Sometimes, the accepted
hypothesis was not confirmed at some fixation point in
the recognition mode (the predicted image fragment did
not correspond to the current one) and the system
returned to the previous phases which prolonged the
overall recognition time. This was dependent on how
similar the memorized images were and how many
fixation points were selected within the similar parts of
different images during their memorizing.

In order to memorize a particular object in the image
or scene containing several objects and/or a complex
background, the model should select only the points of
fixation that belong to the same object. The current
version of our model does not do this in general. In
order to make this certain, in the memorizing mode the
model should deal with images containing single objects
with a uniform background. Then, in the recognition
mode, the model is able to recognize these objects in
multi-object scenes with complex backgrounds. In con-
trast, the natural visual system uses special mechanisms
which provide object separation independent of or even
before object recognition (stereopsis and binocular
depth perception; analysis of occlusions during head
and body movements, color and texture analysis, etc.;
[6,13,28,49]). Additional mechanisms, which separate
the objects in the image from each other and from the
background, should be incorporated into the model to
allow memorizing objects in complex multi-object im-
ages. These mechanisms will prevent a selection of
fixation points outside the object of interest.

In conclusion, our model provides important insight
into the role of behavioral aspects for invariant pattern
recognition. Some model predictions of human vision
mechanisms await special psychophysical experimental
investigations. These include, for example: an invariant
encoding of image elements projected onto the fovea;
the use of elementary features (e.g. edges) in the fovea
center as a basis (frame of reference) for invariant
encoding of both the retinal image and the succeeding
eye movement; the dependence of the selected location
of the next fixation point on the parameters of the basic
features in the fovea. The basic algorithmic ideas of the
model and approach used may be applied to computer
and robot vision systems aimed toward the invariant
image recognition (for example, see Ref. [50]).
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